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D E S C R I P T I O N  OF C R E E P  W I T H I N  T H E  F R A M E W O R K  

OF T H E  FIELD T H E O R Y  OF D E F E C T S  

Yu.  V.  Gr inyaev  and  N.  V.  Cher tova  UDC 539.3 

The creep laws are described within the framework o/ the field theory with the use of evolution 
equations/or the density flux of uniformly distributed defects. For the case of uniaxial defor- 
mation under constant stress, it is shown that a certain critical stress that has the sense of 

creep stability limit exists and two deformation regimes can occur, depending on the magnitude 

of the external load. The unstable-creep rupture time is determined for the system in the case 

where the stresses are greater than the critical stress and the initial rate exceeds the unstable 

stationary rate. 

I n t roduc t i on .  The necessity of using materials at high temperatures and loads and the production of 
new materials whose properties depend strongly on external conditions have motivated many experimental 
and theoretical studies in the field of creep. By creep, deformation processes for which the stress-strain 
relations contain the time explicitly or in terms of certain operators [1] are meant. Creep is typical of 
materials of different physical nature (metals, alloys, rocks, plastics, etc.) at any temperatures (from cryogenic 
temperatures to temperatures close to the melting point). Obviously, the creep laws and physical mechanisms 
of this phenomenon are different for different materials and different cases of loading. 

The physical theories of creep [2-4] that are based on the concept of crystal-lattice defects give deeper 
insight into the phenomenon and describe many specific features observed. It is assumed in the above- 
mentioned studies that elementary creep processes in solids at moderate temperatures are due mainly to 
dislocation displacements. From the viewpoint of physical mesomechanics [5], a deformable solid is a complex 
hierarchical system in which interacting defect structures of different scale level form upon deformation. 

The behavior of the systems of different nature that include many interacting elements has been the 
subject matter of synergetics [6]. In synergetics, the micro-, meso-, and macrolevels of description of the 
system are distinguished. On the microscopic level, separate structural elements are studied by specifying 
their location, velocities, and interactions. On the mesoscopic level, the variables relevant to an ensemble of 
structural elements are introduced. When the system is described on the macrolevel, the mesoscopic level is 
assumed to be the initial level, and methods of predicting the onset of macroscopic structures are developed. 

The existing physical theories [2-4] study the creep phenomenon within the framework of the micro- 
scopic description of a system in which separate noninteracting defects of the material are considered and, in 
addition, their general contribution to the strain is determined. In the present study, the specific features of 
creep are analyzed on the mesoscopic level, where a set of interacting defects is considered and its cooperative 
properties are taken into account. An equation that relates the defect-flux rate to stresses and allows one 
to investigate the creep phenomenon is obtained within the framework of the field theory of defects, which 
describes the dynamics of a dislocation ensemble [7, 8]. This equation is used to investigate the specific 
features of uniaxial deformation, since many results concerning the creep were obtained in experiments on 
bars in tension. 
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1. D y n a m i c  E q u a t i o n s  o f  a D i s l o c a t i o n  E n s e m b l e .  Panin et al. [7, 8] suggested treating a 
deformable solid with defects as a mixture of two, elastic and defect, continua. The elastic continuum is a 
material medium that  undergoes elastic distortions caused by external actions and material defects, and the 
defect continuum is a mechanical field that  transmits the interaction of material volumes and is a carrier of 

energy and momentum. 
Within the framework of this model, the dynamic equations of an elastic defect medium can be written 

in the form 

-B _0 - ( 1 . 1 )  BOklki : --Pi, DeiklOkCtlj : Ot 

0 
: ( 1 . 2 )  

.9int --- . : --(O/Ot)3ij -OiYj  is  t h e  d i s l o c a t i o n  f l u x  density H e r e  c~ij eiklt]kPlj is the dislocation-density tensor, Iij ~ int int 
int r ,  [,gext ~int) is the effective-stress tensor, Pi = P(V/ext -1- ~/ ) is the effective momentum, tensor, (Tij : ~ijkl~/~kl -~- kl 

p is the density of the medium, D and B are the constants of the model, Cijkl is  the elastic constant tensor, 
and elk l is the antisymmetric Levi-Civita tensor. The quantities aij, Iij, aij, and P/ are determined by 
the components of elastic distortions caused by the external actions Rext and the material defects /~int 

�9 ~ ' k l  ~'kl ' the 
rate of elastic displacements <ext and the velocity <int due to defect displacements�9 Supplemented by the 

geometrical relations of elastic continuum with defects [9] Okaki = 0 and (O/Ot)~ij : eiklCgk[lj, Eqs. (1.1) 
consti tute a complete set of dynamic equations of a dislocation ensemble that  satisfies the compatibility 

condition (1.2). 
As shown in [7], in the absence of external actions, the internal stresses and the momentum are 

determined by the Maxwell stress tensor and the density of field-momentum flux: 

(T~t= D(OzkiO~kj--~O~klO~kl)-t-S( Ikiikj --T(~iJ Zkl-Tkl) -}-TJ[ij' 

py/ in t  = Beiktc~knltn. 

Here r; is the viscosity coefficient and ~ij is the Kronecker symbol. Taking these equalities into account, we 
write the dynamic equations of a defect ensemble in the form 

0 v e x  t 
_-- = p i , OkOeki O, -~. O~ij = eiklOklrlj, BOkIki --BeiklCtknlln -- 

(1 .3 )  

0 (O~kiO~kj @O~klO~kl) S ( l k i f k j  ~ I k l I k l )  ?][ij O'ij. Deikl OkOqj -~- - B  -~ Iij - D . . . . .  ext 

This system allows us to investigate the dynamics of the dislocation ensemble for a given external action 
determined by. the quantities V/ext. and ~ijext" 

2. D y n a m i c  E q u a t i o n s  o f  an  E n s e m b l e  o f  U n i f o r m l y  D i s t r i b u t e d  Defec t s .  Koneva and 
Kozlov [10] analyzed the evolution of defect structures and showed that  as the strain increases, the chaotic 
distribution of defects observed at the yield point becomes a sequence of oriented and disoriented defect 
substructures. In a continual description, the intensities of a field of chaotically distributed defects (a and 
I)  are independent of coordinates and correspond to the uniform distribution of defects. In this case, Eqs. 

(1.3) take the form 

0 
Beikl~kni1 n �9 ~ext _ _  : --Pvi ' Ot ctij = O, 

0 5ij 
IklIkl) + r;Iij + ext = 0. 

The second equation of the system implies tha t  the density of dislocations does not depend on time 
when the material defects are distributed uniformly. Setting ~ = 0, we obtain 
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0 ( ~'~ ) ext =0; (2.1) B - ~  Ii j  Jr- B Ik i fk  j -- fklYkl -'[- llZij q- O'ij 

-int 0 
//J = 0-7 ~ii = -~-~ Z/j, (2.2) 

where/3ij  is the plastic distortion which determines the defect flux [9]. We confine our analysis to the case 

of unia.xial loading. In the approximat ion of engineering theories that  establish a relation between strains, 

stresses, their rates, and time, only the components  I l l  = -~11 and a l l  in Eq. (2.1), whose tensor indices 

are dropped below, are nonzero. As a result, we obtain the differential equation 

d~ _ 1 ~2 ~ 1 
dt 2 

which relates the plastic-strain rate  to stresses. Introducing the dimensionless variables v = (B/~)~,  and 

r = (r~/B)t ,  we  write this equat ion in the form 

d__v.v = 1 v2 _ v + S.  (2.3) 
d~" 2 

3. Spec i f i c  F e a t u r e s  o f  C r e e p  a t  C o n s t a n t  S t r e s s .  We assume tha t  the differential equation (2.3) 

describes the deformation of a solid in creep. We consider the simplest case a -- const, which corresponds to 

the creep at constant  stress. Sett ing the right side of Eq. (2.3) equal to zero, we determine the s ta t ionary  
points at  which the strain ra te  is constant  and analyze their stability. The s tat ionari ty  condition 

f ( v )  = v~-/2 - v + S = 0 

yields the s teady creep rates  

vl = p = l + v / 1 - 2 S ,  v 2 = q = l - x / 1 - 2 S .  

Since the quantit ies ~, B, and a determining S are positive, the inequality 0 < q < p holds. 
Analyzing the d iagram of the function f ( v )  and the phase pa t te rn  of the differential equation (2.3), 

we infer tha t  the s ta t ionary  s ta te  q is stable and the s ta te  p is unstable. When the governing paramete r  

S determining the external action tends to 1/2, the stable and unstable s ta tes  become close; these states 

coincide for 

S* = 1/2, (3.1) 

and disappear  simultaneously for S > 1/2. Thus,  S* is the critical value of the governing parameter .  For 

S < 1/2, the behavior  of the real sys tem described by Eq. (2.3) becomes stable. The system goes to the 
s ta t ionary  s ta te  v2 = q; thereby, the possibility of experimental  determinat ion of the unstable s ta t ionary 

s ta te  'vl = p is eliminated. For S > S*, an unstable creep regime with an increased rate occurs. 

Let us consider the above results in greater detail. When  S < S*, the solution of Eq. (2.3) has the 

form 

I 2 In = T + C ,  
p -  q q 

where C is an integrat ion constant  which is determined from the initial conditions v(0) = v0. As a result, 

the solution can be wri t ten as follows: 

v(v) = p - q[(vo - p ) / ( v o  - q)] exp [(p - q)T/2] (3.2) 
i - [ ( v o  - p ) / ( v o  - q ) ]  exp [(p - q)T/2] " 

Figure 1 shows the evolution of the strain ra te  for S = 0.2. For small r ,  the form of the function v(T) 

is determined by the initial value vo. The  following intervals are distinguished: 0 < v0 < q, q < v0 < p, 
and v0 > p. Figure l a  shows the curves v ( r )  calculated for the values of v0 that  belong to the first two 

intervals. For v0 > p, the function v ( z )  shown in Fig. l b  has a singularity of the type 1 I x  for x = 0, where 
x = 1 - [(v0 - p ) / ( v o  - q)] exp [(p - q)v/2]. Consequently, the rupture  t ime at  which the strain ra te  tends to 

infinity is determined from the formula 
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decreases as the  external  load and the initial loading ra te  increase. For large values of T, the The  t ime 7"1 
s t ra in  ra te  does no t  depend  on v0; as v ---, ec, we have v(v) ---+ q, i.e., the  creep becomes stable. 

For S > S*, the  solution of  Eq. (2.3) can be wr i t t en  as follows: 

n + a 2 (n 2 + .2) cos ( a t / 2 )  
v(T) = - -  + , (3.3) 

. (cos (a~/2) - (n/~)  sin ( a t /2 ) )  

where 2a  = p - q and n = 1 - v0. Figure  2 shows the solut ion (3.3) for S = 0.6 and v0 = 0.7. Evidently,  the 

evolut ion t ime until  the real sys tem disintegrates is restr icted by the condi t ion 

cos ( ~ / 2 )  - (n/s) sin (~v /2 )  = 0 (3.4) 

under  which the  s t ra in  ra te  tends to  infinity. According to (3.4), the "lifetime" of  the  sys tem before disinte- 

g ra t ion  is 72 = (2/c~)(arctan (a/n) + 7r). 
An analysis  of  the  last relat ions shows t h a t  ~-2 decreases as S and vo increase. Figure  3 shows the  

creep s train versus the  t ime for different levels of  external  load and v0 = 0.7, which satisfies the condi t ion 

q(S) < so < p(S). 
4. C r e e p  C u r v e s .  Exper imenta l  results are generally represented as a creep curve tha t  characterizes 

the  s train var ia t ion with time. Three  segments  are dis t inguished on the creep curve [1, 11, 12]. In  the  first 

segment ,  the  s t ra in  ra te  gradual ly  decreases to the  min imum value, which remains unchanged  in the second 

segment .  In  the  th i rd  segment,  the s t ra in  rate  increases, which results in the rup tu re  of a specimen. Wi th in  

the f ramework  of our  approach,  the corresponding relat ions can be obta ined  by in tegrat ing expressions (3.2) 

and  (3.3) over the time. T he  creep curve is described by  the relat ions 
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5(r)  = ~-o + p r  + 21n I(P - q ) / { P  - vo - (q - vo) exp [(p - q)7-/21}], (4.1) 

~(c) = r + 7 - 2 In I cos (at/2) - ( n / a )  sin (c~r/2) I (4.2) 

for S < S* and S > S*, respectively. Here ~0 = ~(0). I t  follows from (4.1) tha t  ~ ( r )  ~ C + q7 as ~- ~ oc ( C  

is a constant) .  This shows tha t  a s ta t ionary deformation regime with the constant  rate q exists for S < S*. 
As was noted above, for S > S*, the t ime before rupture  is restricted by condition (3.4). In the limit where 

T is small and subject to the condition aT < 1, expressions (4.1) and (4.2) can be wri t ten in the form 

~(r )  ~ ~o + vor .  

Figure 4 shows creep curves calculated for S = 0.15 < S* and v0 = 0.7 (a) and S = 0.6 > S* and 
v0 = 0.3 (b). In both cases, the initial strain was taken to be 0.01%. 

5. D i s c u s s i o n  o f  R e s u l t s .  A creep analysis on the basis of  the equat ion tha t  describes the evolution 

of the flux of uniformly distr ibuted defects shows that  the character  of the process depends strongly on the 
external load S and the initial strain rate  v0. For a constant  tensile stress, tile stable creep region is restricted 

by the conditions 0 < S < S* and 0 < v0 < p, where S* has the sense of the stable creep limit and is 

determined,  according to (3.1), by the material  pa ramete rs  that  describe the inertia of an ensemble of defects 
and the viscosity of the medium. As follows from the s t ra in-rate  evolution analysis, this quant i ty  increases 

for small r and 0 < v0 < q and decreases for q < v0 < p to the minimum s ta t ionary  value q ( S )  for S < S*. 
By vir tue of the fact tha t  the creep rate  in the first segment  of the exper imental  curves gradually decreases 

to the min imum rate  corresponding to steady creep, one should use vo > q as the initial values of v ( r ) .  

The resulting expressions for v ( r )  agree with tile well-known fact tha t  the creep ra te  increases with 

stresses [vl(S1) > v2($2) for $1 > $2] [12] and also describe the condition q ( S )  = 0 for S -= 0 taken into 
account when this quant i ty  is determined within the f ramework of phenomenological  theories [li]. 

For S < S*, the stages of uns teady and s teady creep can be identified on the creep curve [1, 11, 12]. 
The above relation for e ( r )  is not valid for the third segment of the creep diagram, where the s t rain rate  

increases and the deformation terminates  with rup ture  of the specimen. However, the experimental  creep 

curves were obtained at constant  load. Rabo tnov  [11 and Kachanov [12] consider that  the accelerated creep 
is absent up to the moment  of specimen rupture  in the case of constant stress considered. 

Kaehanov [12] described the creep curve for S > S*. Pointing out the diversity of creep relations, 
he considers tha t  the first segment,  where the strain ra te  decreases, can be absent on the creep curve; after 

a short period of almost constant  rate, the creep ra te  increases, i.e., the d iagram contains only the third 

segment. An analysis of creep within the framework of the field theory of defects shows tha t  the different 
creep regimes observed in reali ty occur in the specimen at  different levels of  applied load. 
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